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SUMMARY 

Computer simulations may contribute significantly to the optimal design of air-conditioning systems. To 
capture the effects of partially permeable walls such as bookshelves on the movement of air and heat, it is 
necessary to extend the density-dependent Navier-Stokes equations by an additional friction term. The 
finite element technique is convenient to approximate the extended equations in spatial co-ordinates. For 
the time co-ordinate a recently proposed semi-implicit finite difference method is very efficient in terms of 
accuracy and computational complexity. A pressure correction approach is most appropriate to decouple 
the primitive variables in the extended Navier-Stokes equations. The resulting algorithm has the interesting 
feature that small symmetric positive definite systems of equations can be solved sequentially for each of the 
primitive variables. Iterative solution of the systems of equations with preconditioned conjugate gradients 
combined with a compressed storage scheme allows fine grid computations at affordable costs. As an 
example a two-dimensional version of the code was applied to an enclosure which was heated from the side 
and contained a porous wall. The time-dependent computational results are compared with measurement 
data. 
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INTRODUCTION 

Expensive and time-consuming physical models are used to estimate the optimal dimensioning of 
air-conditioning systems today. Recent developments in computational fluid dynamics as well as 
supercomputer power open new possibilities. Computer simulations may help to optimize 
air-conditioning systems.' However, the real world inside an air-conditioned building or office is 
frequently far from the perfect and idealized assumptions which are made by classical computa- 
tional fluid dynamics codes. Especially with regard to furniture and people in a building we 
identified a need to develop a mathematical approach, which can be helpful to better represent 
a realistic situation. 

THE CONCEPTUAL MODEL 

Volume averaging, a simple variant of the general homogenization theory, is used to derive 
a mathematical tool for the simulation of air-conditioning in buildings with porous obstructions 
such as furniture and people. The technique has already been used earlier to verify Darcy's law for 
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porous media flow' and to extend the viscous flow equations in regions where a porous matrix is 
It is necessary to extend the equations in such a way that 

(1) they are valid for the porous region 
(2) they are valid also for the viscous region 
(3)  they are valid at the interfaces between the two regions 
(4) they fulfil the boundary and interface conditions. 

If the porous region can be characterized by a representative porosity n, which is the volume 
fraction of the total representative elementary volume (REV) which is occupied by the fluid, it is 
obvious that the conservation equations for the fluid are valid only in the pore space n. 
Furthermore, intrapore fluid-solid interactions have to be considered. As Irmay showed,' the 
bulk behaviour of the flow in a large enough REV of the porous region can be averaged and, by 
using minimum energy principles, Darcy and Forchheimer formulae can be derived. A very 
detailed discussion of the calculation of fluid-solid interactions for viscous flow in a prismatic 
microstructure was given by Du Plessis.' The general form of the conservation equations for 
mass, momentum and energy in viscous and porous regions in terms of the primitive variables, 
velocities ui, ( i =  1, 2, 3), pressure p and temperature T, is given by D a n i e l ~ . ~  

The general extended conservation equations contain numerous non-linearities in the density 
p, the dynamic viscosity p, the porosity n and the pore or fluid velocities u i .  It has been 
demonstrated e l ~ e w h e r e ~ . ~  that error analysis, where all non-linearities are developed into first- 
order Taylor series with respect to the variation in the two variables of state, pressure p and 
temperature T, can identify non-linearities which are important and others which are unimpor- 
tant. For the anticipated applications in air-conditioning, where 

( 1 )  the variations in temperature and pressure are small 
(2) energy dissipation due to viscous forces and changes in pressure are negligible 
(3)  the flow is basically incompressible 
(4) the velocity field is divergence-free 
( 5 )  the porosity n of the porous region is a bulk constant 
(6) thermal properties cp and 1 are basically constant 

the conservation equations simplify substantially to 

ami -=O, axi  

(3)  

Here t is the time co-ordinate, x i  are Cartesian space co-ordinates (i= 1 , 2 , 3 ) ,  gi is the vector of 
gravity, cp is the fluid's thermal capacity and I ,  its thermal conductivity tensor, Qb is a volume heat 
source or sink, mi = n p  ui denotes the mass flux vector, po is a reference fluid density, P is the 
kinematic pressure (equation (5)), Wij is a tensor friction coefficient, which in the case of 
non-linear Forchheimer porous medium flow with the Ward" formula for the dimensionless 
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friction factor c = 0.550 is given by equation (6), and v is the kinematic viscosity: 

P 
Po 

p=--gixi, 

where k, is the permeability tensor of the porous material and 6, is the Kronecker delta. For 
a prismatic microstructure Du Plessis* theoretically derived the following expression for the 
friction coefficient: 

where the porous medium Reynolds number Re indicates the ratio between linear Darcy flow and 
non-linear, velocity-dependent Forchheimer flow, 

and d ,  is the cross-sectional linear dimension of a porous region.* He was able to verify this simple 
analytical expression against numerical simulations by Rothmann' 'and Coulaud et d.,' who 
calculated the bulk force on a fluid flowing in numerically discretized voids of a model porous 
medium. We therefore believe that the Du Plessis formula can be used to estimate the friction 
tensor Wij for the system configurations which are under consideration in 
problems. Aij is the tensor thermal diffusivity of the bulk medium, 

The index 'k' denotes matrix properties. Dmij is the mechanical dispersion 
exchange term A ,  between the locally averaged fluid phase temperature T 
averaged solid phase temperature Tk a simple linear approximation 

= 5 (Tk - T) ,  

air-conditioning 

tensor. For the 
and the locally 

with an exchange coeflicient ( which depends on the shape and size of the matrix particles, may be 
appropriate in most cases. Much better approximations for any type of shape functions and 
consideration of time-dependent temperature Tk (or concentration) gradients can be found in 
Reference 13. A discussion of the simplified equations (1H4) for conservation of mass, momentum 
and energy in viscous and viscous/porous flow was given in Reference 7. 

PRESSURE CORRECTION SOLUTION 

A new conceptual model for the flow of fluid and heat in domains with permeable obstructions is 
available. The conservation equations for momentum and mass are similar to those for viscous 
flow. Therefore it is appropriate to use a viscous flow solver. To the best of our knowledge and 
experience,' a time-dependent solution of the Navier-Stokes equations can best be obtained by 
pressure correction methods. Gresho14 proposed a semi-consistent mass, semi-implicit finite 
element pressure correction scheme. We combined it with a stable and second/third-order- 
accurate time integration scheme15 for the momentum equations16 and used it to solve the set of 
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simplified equations (1H4). The Galerkin weak form reads 

CTm = g, 

am 
at 

M -+CcP=f-(D+ V+F)m, 

aT 
Ms - =fs - (0, + V, ) T + A, ( Tk - T ) ,  

at 

where CT, g, M, C , f ,  D, V,  F , f ,  and A, are global matrices for divergence, boundary fluxes, mass, 
gradient, boundary traction, diffusion, convection, friction and interphase heat exchange. The 
shape of the matrices is a r b i t r a r ~ . ~  It is important to note the following, however, in the context of 
general quadrilateral bilinear finite elements. 

The approximation function 4 for velocities and temperatures is bilinear and the approx- 
imation function Y for the pressure is element-wise constant and equal to one or zero 
respectively. There is a numerical problem in the case where the porous medium friction is 
much larger than the viscous forces. In this case the flow field approaches potential flow. It is 
expensive to calculate potential flow with bilinear velocities and element-wise constant 
pressures. 
The porous medium friction is split into a main diagonal part 

and the rest, which is added as one of the components of the right-hand-side vector$ 

M I- ~. 

f$= W5j &(l -6ij)+frnjndi2e, n =  1, N. 
e =  1 Re 

DECOUPLING OF THE EQUATIONS 

A most efficient time-dependent solution of the coupled system of equations (llH14) requires 
complete decoupling of the equations. The heat transport equations for the fluid and matrix 
phases can be decoupled from each other by the Leismann et al.” scheme. The continuity and 
momentum equations can be decoupled when the continuity equation is replaced by a pressure 
Poisson equation. The temperature and flow fields are calculated sequentially and the non- 
linearities in the mass fluxes mj and buoyancy are iterated by a Picard iteration. The pressure 
correction algorithm which is used for the flow field is similar to the one developed by Gresho.14 
However, the Leismann and Frind scheme” is used to place the convective components of the 
momentum equation and the energy equation at the old time level. Therefore the scheme yields 
symmetric linear systems of equations which can be solved by the most efficient variants of the 
conjugate gradient method.’* The algorithm can be summarized as follows. 

0. Start-up procedure: impose the divergence-free condition CTmo =go on the initial estimate 
for the mass fluxes. 
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1. Given rn, with CTrn,=g,, P,,  T, and Tkn at time co-ordinate t ,  and additionally given 
estimates (from the last iteration step) m,, P, and T, for the values at time co-ordinate 
(t ,  + + tJ2 ,  where m, is also divergence-free. 

2. First intermediate fluxes ij are calculated from the Galerkin form of the momentum 
equation (12) using the Leismann and Frind15 time integration scheme with a balancing 
tensor diffusivity matrix and a time-weighting factor 8: 

mi,,-AtMM~'CiP,+Atfi, i= l ,2 ,3 ,  in R, (15) 

Leismann and Frind showed that their scheme is second-order-accurate and unconditionally 
stable for pure convection and 8 = $. For 8 =+ they proved third-order accuracy but then there is 
a stability limit. The boundary conditions are the physical boundary conditions at the new time 
plane t ,  + : 

M is the Galerkin mass matrix. The index L denotes mass lumping, n, is the outward-pointing 
normal vector and f represents boundary tractions. Since we generally do not have better 
information, we often choose f, = - P,, f, = 0, which represents 'no-slip' or 'open-outflow' 
boundary conditions. 

It is very important to note that equation (15) is solved sequentially for GX, qY and 4,. Therefore 
the systems of equations are small and easy to solve by conjugate gradient methods. It was 
already mentioned that these systems of equations are symmetric positive definite. 

3. Of course, qi are only estimates for the true mass fluxes mi,+ '. They do not even fulfil the 
continuity equation (1  1)  in general. It is fairly simple, however, to find a closely related 
vector field 4i, which is divergence-free. Variational principles7 or the projection method14 
render the following correction algorithm. 
(a) Solve a Poisson equation for a vector of Lagrange multipliers cp of length equal to the 
number of bilinear quadrilateral elements with the divergence of 4 as the right-hand side at 
the time level t,+ 1: 

(b) Postprocess the divergence-free corrected flux qi: 
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4. Also, the vector of Lagrange multipliers cp is a good estimate for the error in the pressure 
estimate P, ,  which can be updated as 

2v 
At 

P , = P , + -  i n n .  

5. With solenoidal estimates qi of the mass flux vector available from steps 1-3, the 
temperature fields can be calculated. Using the Leismann et a1" decoupled algorithm, the 
following steps are performed. 
(a) Solve for the fluid temperature T , + ,  at the new time level: 

CM, + At(& + 8DB + A 1 11 Tn + 1 

= { A 4 -  A t [  V, +(1- O)D,]}  T,, + A @ ,  +An+ 1) in R, 
according to BCs 

Tn+I=TR on rl ,  niAijCj*TT,,+l on r2. 

(19) 

A l  is a diagonal matrix which contains the exchange with the solid matrix phase and a l  is 
the equivalent contribution from the solid phase: 

A , = A f [ I - ( M : + A : A t ) - '  At A:], 

a1 =&(Mi + A:At)-' k!; Tkn + f k n +  1 .  

I is the identity matrix and the index L denotes lumped matrices. 
(b) Finally, the solid phase temperatures Tkn+ can be postprocessed from 

Tk n + 1 =(Mk + A:At)-' CMk Tkn +At(fkn+ 1 Af;Tn+ 1 )I* (20) 
6. If T,,+ is close enough to T, (convergence of T is checked by calculation of the residual 

norm of equation (19) with T, used as T,+ before solution of equation (19)), a step forward 
in time is taken with 

Min=qi ,  P,,=p,, Tn=Tn+1, Tkn=Tkn+l and tn=Tn+l,  

and step 1 proceeds. If there is no convergence, 

Tn+l+Tn 
2 '  

ms=- mn+q and T,= 
2 

and the next iteration is started with step 1 .  In general, only two iteration steps (Picard) are 
needed to get convergent results, because the non-linearities in the convection and buoy- 
ancy terms are not severe. 

PRELIMINARY APPLICATION RESULTS 

The simplified, extended set of equations (1H4) and the pressure correction solution algorithm 
were used to solve the Beckermann et aL6 problem. A two-dimensional enclosure is heated at the 
left-hand side and cooled at the right-hand side. Two fluid regions alongside the vertical walls are 
separated by a porous wall. The Rayleigh number is Ra = 3.7 x lo6 and the Prandtl number is 
Pr = 6.44. Four different materials and grain sizes were used by Beckermann et al. Figure 1 shows 
contours of measured densities and our calculated temperatures 2.500 s after set-up of the heating 
for the four examples. At that time the calculation has attained a steady state. Figure 2(a) shows 
the scheme of the Beckermann et al. problem. Figure 2(b) shows the time-dependent development 
of the temperature field for Example 1. Figure 2(c) shows the stream function development for 
Example 1. 
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Figure 1. Mach-Zehnder interferometer measurements of Beckermann et al. and calculated contour plots of temperature 
distribution (TI =24.2"C, T2=22.2'C, contour line step 0.1 "C) for Examples 14 (from left to right) 

375 s 50 s 

Figure 2. (a) Computational domain and time-dependent evolution of (b) temperature and (c) streamfunction for 
Example 1 

FURTHER APPLICATIONS 

Of course, the Beckermann et al. problem is not the ultimate goal that we are aiming at in the 
simulation of air-conditioning systems. However, the results which were obtained indicate that 
the conceptual model and the pressure correction algorithm are appropriate to simulate the flow 
of fluid and heat in domains with porous obstructions. With respect to air-conditioning systems 
we are now working on a three-dimensional version of the code and a simple eddy viscosity 
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turbulence model. We plan to apply the final code to the Schachenmann et al.’ large-scale air- 
conditioning laboratory experiment and variants of it. 

CONCLUSIONS 

A conceptual model for the simultaneous computation of fluid and energy flow in domains with 
porous and permeable obstructions was proposed and discussed. The set of equations is 
appropriate to simulate air-conditioning problems. Since the flow equations are similar to the 
incompressible Navier-Stokes equations, a pressure correction algorithm combined with a semi- 
implicit time integration scheme for the momentum and energy equations was used to solve the 
Galerkin finite element algebraic equations resulting from the space-time integration of the 
differential equations. Preliminary application to laboratory experiments showed that the con- 
ceptual model is applicable and gives appropriate results. Furthermore, the pressure correction 
solution concept proved to be accurate and, to the best of our knowledge, very efficient to 
calculate the time-dependent development of the flow and the temperature. Since the preliminary 
considerations and results presented here did not show major drawbacks, we plan to apply 
a three-dimensional version of the code to a controlled large-scale air-conditioning experiment. 

REFERENCES 

1. A. Schachenmann, D. Wiss and G. Metzen, ‘Numerische Berechnung von Raumluftstromungen und Vergleich mit 
LDA-Messungen im Fall freier und erzwungener Konvektion’, Technische Rundschau, Sulzer, 1/90, Winterthur, 1990. 

2. S. Irmay, ‘On the theoretical derivation of Darcy and Forchheimer formulas’, Trans. American Geophysical Union, 39, 

3. D. D. Joseph, D. A. Nield and G. Papanicolaou, ‘Nonlinear equation governing flow in saturated porous medium’, 
Water Resources Res., 18, 1049-1052 (1982). 

4. D. A. Nield, “on-Darcy effects in convection in a saturated porous medium’, Proc. CSIROIDSIR Seminar on 
Convective Flows in Porous Media, DSIR, Wellington, 1985, pp. 129-139. 

5. T. Nishimura, T. Takumi, M. Shiraishi, Y. Kawamura and H. Ozoe, ‘Numerical analysis of natural convection in 
a rectangular enclosure horizontally divided into fluid and porous regions’, Inr. J .  Heat Mass Transfer, 29,889-898 
(1986). 

6. C. Beckermann, R. Viskanta and S. Ramdhyani, ‘Natural convection in vertical enclosures containing simultaneously 
fluid and porous layers’, J. Fluid Mech., 186, 257-284 (1988). 

7. H. Daniels, ‘Numerische Berechnung instationarer Stromungsvorgange in Warmespeichern’, Dissertation, Inst. fur 
Wasserbau, RWTH Aachen, 1990. 

8. J. P. Du Plessis, ‘Saturated crossflow through a two-dimensional porous medium’, Adv. Water Resources, 14, 131-137 
(1991). 

9. D. D. Gray and A. Giorgini, ‘The validity of the Boussinesq approximation for liquids and gases’, Int. J. Heat and 
Mass Transfer, 19, 545-551 (1976). 

702-707 (1958). 

10. J. C. Ward, ‘Turbulent flow in porous media’, J. Hydraul. Div. Proc. ASCE, 90 (HY5), 1-12 (1964). 
11. D. H. Rothmann, ‘Cellular-automaton fluids: a model for flow in porous media’, Geophysics, 53(4), 509-518 (1988). 
12. 0. Coulaud, P. Morel and J. P. Caltagirone, ‘Numerical modelling of non-linear effects in laminar flow through a 

porous medium’, J. Fluid Mech., 190, 393-407 (1988). 
13. J. Birkholzer, ‘An efficient semi-analytical method for numerical modeling of flow and solute transport in fractured 

media’, Proc. 8th Int. Conj on Computational Methods in Water Resources, Venice, 1990. Comp. Mech. Publ., 
Southampton, 1990, pp. 235-244. 

14. P. M. Gresho, ‘On the theory of semi-implicit projection methods for viscous incompressible flow and its implementa- 
tion via a finite element method that also introduces a nearly consistent mass matrix, Part 1: Theory’, Int. j .  numer. 
methods fluids, 11, 587620 (1990). 

15. H. M. Leismann and E. 0. Frind, ‘A symmetric-matrix time integration scheme for the efficient solution of 
advectiondispersion problems’, Water Resources Res., 25, 1133-1 139 (1989). 

16. H. Daniels, ‘The Leismann scheme and pressure correction to solve the incompressible Navier-Stokes equations’, 
Proc. 7th Int. Con5 on Numerical Methods in Laminar and Turbulent Flow, Pineridge, Swansea, 1991, pp. 1421-1431. 

17. H. M. Leismann, B. Herrling and V. Krenn, ‘A Quick algorithm for the dead-end pore concept for modeling 
large-scale propagation processes in groundwater’, Proc. 7th Int. Con$ on Computational Methods in Water Resources, 
Vol. 2, 1988, Elsevier, Amsterdam, 1988, pp. 275-280. 

18. A. Peters, M. Eiermann and H. Daniels, ‘Symmetric versus non-symmetric matrix techniques: a comparative study of 
two Galerkin-FE approaches for the advectiondispersion equation’, IBM Technical Report T R  75.91.07, Heidel- 
berg, April 1991. 


